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1. INTRODUCTION

The "windows" of observational astronomy have become broader. They now

include -- along with photons from many decades of the electromagnetic

spectrum -- extraterrestrial "artifacts" of other sorts: cosmic rays,

meteorites, particles from the solar wind, samples of the lunar surface,

and neutrinos. With gravitational-wave astronomy, we are on the threshold --

or just beyond the threshold -- of adding another window; it is a particularly

important window because it will allow us to observe phenomena which cannot

be studied adequately by other means: gravitational collapse, the interiors

of supernovae, black holes, short-period binaries, and perhaps new details of

pulsar structure. There is the further possibility that gravitational-wave

astronomy will reveal entirely new phenomena -- or familiar phenomena in

unfamiliar guise -- in trying to explain the observations of Joseph Weber.

The future of gravitational-wave astronomy looks bright whether or not

Weber (1969; 1970a,b,c; 1971a,b) is actually detecting gravitational radia-

tion. If Weber's events are indeed produced by gravitational waves, then

activity in the coming decade will focus on measurements of the polarization,

the spectrum, and the wave-form of those waves -- and on theoretical attempts
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to explain their source. If Weber's events are not gravitational waves,

their explanation may be astronomically interesting in its own right, and

they at least will have helped generate enough gravitational-wave technology

to bring waves from well-understood sources within experimental reach by

1980.

We (the authors) find Weber's experimental evidence for gravitational

waves fairly convincing. But we also recognize that there are as yet no

plausible theoretical explanations of the waves' source and observed strength.

Thus, we feel we must protect this review against being made irrelevant by a

possible "disproof" of Weber's results. We have done this by relegating to

the end of the article (§6) all ideas, issues, and discussion which hinge

upon Weber's observations.

2. PROPERTIES OF GRAVITATIONAL WAVES

Physical reality of waves.-- Einstein's theory of gravity ("general

relativity") predicts, unequivocally, that gravitational waves must exist;

that they must be generated by any nonspherical, dynamically changing system;

that they must produce radiation-reaction forces in their source; that those

radiation-reaction forces must always extract energy from the source; that
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the waves must carry off energy at the same rate as they extract it; and

that the energy in the waves can be redeposited in matter (e.g., in gravi-

tational-wave antennas). (For detailed mathematical derivations of these

predictions see, e.g., Misner, Thorne, and Wheeler (1972), hereafter denoted

"MT?,.)

Regretably, there was an era (1925-1955) when many relativity theorists

doubted whether general relativity actually made these predictions. But

those doubts, one now realizes, had no foundation. They were generated by

defective viewpoints and analyses. Not only does Einstein's theory of

gravity predict the existence of gravitational waves; so does the theory of

Brans and Dicke (1961) and its generalizations [cf. Morganstern (1967),

Morganstern and Chiu (1967), O'Connell and Salmona (1967), Wagoner (1971)],

and so does every other theory of gravity which today is experimentally

viable. [For discussions of currently viable theories see Thorne, Will, and

Ni (1971), Ni (1972a), and Nordtvedt and Will (1972).] Moreover, it appears

likely -- though it is unproved as yet -- that the power and spectrum of the

gravitational waves emitted by any nonspherical source are theory-independent,

in order of magnitude. [See, e.g., Trautman (1965).] The strength of the
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waves is probably fixed by the local validity of special relativity, by the

nature of gravity in the Newtonian limit, and by theory-independent principles

of physics (conservation of total energy, etc.). For perfectly spherical

sources, some theories -- those with a scalar gravitational field -- allow

monopole radiation, which is forbidden in (purely tensor!) general relativity.

However, the strength of the monopole waves is comparable to the strength of

the quadrupole waves that the same source would emit in general relativity --

if it were made somewhat nonspherical (Ni 1972b; Morganstern and Chiu 1967).

The detailed formulas and numbers given in this article will be based

on the predictions of general relativity.

What is a gravitational wave? -- The answer can be given clearly and

quantitatively without any appeal to the formalism of general relativity.

In Newtonian theory, the gravitational field is fully described by the

gravitational potential 0. In the neighborhood of some fiducial point

(e.g., the center of mass of a gravitational-wave receiving antenna), the

potential can be expanded in a power series,

O(X) = o - gjxj + E ½ RjOkO jxk + 1.
j 2jj,k jk

Here x. are the components of the vector x from the fiducial point to the
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measuring point; the numbers gj are the components of the "local acceleration

of gravity," and the numbers RjOkO measure the inhomogeneity in the gravita-

tional field at the fiducial point. In the language of Einstein, RjokO are

components of the "Riemann curvature tensor." (Actually there are additional

components, corresponding to indices other than zero in the second and fourth

positions of RjokO; but they will be ignored in this review article.) In the

language of Newton, RjOkO are second derivatives of the potential o,

RjokO = a2/axjax
k

2.

The gravitational force which acts on a mass m at location x is given by

F= - v7 and has the components

Fj = - m/xj = - Em RjokO k

Notice that the force -Z k m R
j OkO xk depends linearly on the mass position

x. It is a "relative force" (sometimes also called a "tidal force" or

"stress") between the position x and the fiducial point. This relative

force is responsible for the ocean tides (relative to their pull on the

earth, the moon and sun pull harder on near oceans, weaker on far oceans,

making two tidal bulges); it is also responsible for the general precession



of the equinoxes (moon and sun pull harder on that part of the earth's

equatorial bulge nearest them than on that part farthest away; this causes

a torque which precesses the earth's rotation axis).

Gravitational waves can be thought of as a "field of (relative) gravita-

tional forces which propagate with the speed of light." They are a contribu-

tion to RjOkO of which Newton was unaware, and which can be added straight-

forwardly to the Newtonian contribution (at least in nearly Newtonian regions

of spacetime like the solar system):

RjOkO= a O/iax + (jOkOGW)

Einstein's theory dictates the form of RjOkO For example, a (locally)

plane gravitational wave propagating in the z direction has

R(GW) R(GW) 1 
ROxO - yOyO = 2 h (t- z/c)

R(GW) R(GW) ( x ( z/c)
xOyO yOxO 2 tz/c

all other components vanish 5.

Here h+ and h are arbitrary dimensionless functions, which represent the

momentary amplitudel of the wave in the two orthogonal polarizations "+"

and "x"; dots denote derivatives with respect to t; and c is the speed of
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Footnote 1 (page 6 of manuscript)

In general relativity h and h are the magnitude of the perturbations

in the metric tensor g v = diag (-1, 1, 1, 1) + h v. (See, e.g., MTW

where h and h are denoted A and A .) This fact motivates the notation,

but need not concern us here.



light. Notice that the relative forces, Fj = - SkmRjOkO Xk are entirely

perpendicular to the propagation (z) direction. In this sense, gravitational

waves, like electromagnetic waves, are transverse. Figure 1 represents the

relative forces of a gravitational wave by a line-of-force diagram. An

object placed in this force field will experience time varying stresses due

to the wave's relative gravitational forces, and those stresses will produce

mechanical strains. This is the essence of the interaction of the wave with

matter. We shall see below that the magnitude of the strain produced is

typically of the order of the dimensionless wave amplitude h.

Energy carried by waves. -- Like electromagnetic waves, gravitational

waves carry energy with the speed of light [(energy flux) = (energy density)

x (speed of light)]. For a gravitational wave the energy flux is well

defined when one averages over several wavelengths, but one cannot say

unambiguously whether the energy is located in the "trough" of the wave or

in its "crest" (Isaacson 1968). The energy flux, expressed in terms of the

amplitude and an average "()" over several wavelengths is (Isaacson 1968;

MTW)

< + >
1XrG + X 16it c + cX)
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where G is Newton's gravitation constant and L
0

is a natural unit for power

in gravitation theory:

L0 = c /G = 3.63 x 1059 erg/sec = 2.03 x 105 oc
2
sec 7.

This energy flux has all the properties one would expect from experience with

electromagnetic theory: It is conserved (amplitude dies as l/r, flux as 1/r
2

when one receeds from source); it can be deposited in detectors; and it acts

as a source for gravitation (e.g., it helps produce the cosmological curva-

ture of the universe). For further details see Isaacson or MTW.

Propagation of waves. -- Once emitted, a gravitational wave propagates,

virtually unimpeded, forever. It is harder to stop than a neutrino! The

only significant modifications in the wave as it propagates are redshifts

(doppler, gravitational, and cosmological; identical to those for an electro-

magnetic wave), and decrease in amplitude due to "inverse-square-law"

spreading of wave fronts (also identical to electromagnetic case). Other

modifications (dispersion; backscatter; tails; etc.) occur in principle but

are negligible except near highly relativistic sources.
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3. GENERATION OF GRAVITATIONAL WAVES

Fundamental regimes. -- In analyzing a source of gravitational waves,

two issues are important: (i) Is the source slowly changing or rapidly

changing? "Slow change" (or "slow motion") means that the reduced wavelength

k = \/2Tr of typical waves produced by the source is much larger than the size

of the source, X >> L -- i.e., that the source lies deep inside the near

(induction) zone of its own fields. This is typically (but not always) true

if the characteristic internal velocities of the source (relative to its

center of mass) are much less than the speed of light, V << c. "Fast motion"

or "rapid change" means that the source lies partly in its own wave zone

X ! L; this is necessarily true if V - c. (ii) Are the gravitational fields

inside the source weak or strong? "Weak" means size of source large compared

to Schwarzschild radius, L >> 2GM/c2 3 km (M/M ); "strong" means L - 2GM/c2

Slowly changing sources. -- If k >> L, a set of simple formulas describes

the emission process. These formulas apply to strong-field sources as well

as to weak-field sources [cf. § 104 of Landau and Lifshitz (1962), or

§§ 36.9 and 36.10 of MTW]. The simplicity of the radiation theory for

X >> L arises from the fact that, like electromagnetic radiation, gravita-
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tional radiation admits the "poor-antenna" or "lowest-multipole" approxima-

tion. (In electromagnetism this is also called the "dipole approximation.")

A source much smaller than a wavelength is a very inefficient radiator, and

(aside from fractional corrections of order [L/X]
2
) emits only radiation in

the lowest allowed multipole. For gravitational radiation this is quadrupole

radiation, and the radiation from slowly changing sources is completely

determined by the time evolution of its "reduced quadrupole-moment tensor"

Ijk. For sources with weak fields (e.g., the solar system but not pulsars),

Ijk has the familiar form

/ trace-free part r x 3 2 3
jk \of moment of inertia) = kd 3 kjk J Pr d x 8.

For sources with strong fields Ijk cannot be calculated this way except in

rough order of magnitude. Instead, it is operationally defined by an

examination of the Newtonian potential 0 outside the source (at r > L and

r >> GM/c2), but in the rear zone (r << x). An accurate calculation requires

general relativity [see, e.g., Ipser (1970) who treats the case of a rotating,

deformed neutron star -- i.e., a pulsar].

In terms of tjk' however calculated, the total power radiated in quadru-
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pole waves by a slowly changing source is

LGW 55 <(jk) 2) L0 (2GMeff/c L) (L/) 9.
c j,k 

L (2GMff/cL) (v/ c) interna(Linternal/L0)

Here M ff is the "effective mass" in the changing quadrupole moment,

defined by (amplitude of changes in Ijk) Meff L ; v = cL/k is the

characteristic internal velocity, and Linternal is the "internal power flow"

associated with the quadrupole motions

L = (1 M v )= (A 10.internal =2 Meff v )(L/v) 10.

The power is radiated in a typical quadrupole pattern (amplitude a quadratic

function of angle; roughly isotropic). More particularly, the flux emitted

in a given direction (unit vector nj) is

G 1 . ?-TT 2
!T =C 1 < (11.=5 2 jk) >ret

c 8ir jk 

TT
where "ret" means "evaluated at retarded time (t-r), and Ijk is the "trans-

jk

verse traceless part of Ijk":

TT
jk M njn) m (6mk m k)

The field of relative forces, RjokO, produced by the waves is
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4+TT

RrOkO -G 1 jk 13.
c dt

- -ret

corresponding to a dimensionless amplitude with order-of-magnitude

h+ or X GM ff r jc) 10-16 (Mff) () r1 14.

Rapidly changing, weak-field sources.-- When L >? X, quadrupole radiation

does not generally dominate over radiation of octupole and higher order, so

the above formulas cannot be used. Instead, one must use the full formalism

of general relativity, or else the "linearized theory" (linear approximation

to general relativity).

Only a few rapidly changing, weak-field sources have yet been analyzed

in the literature. One is the small-angle "Coulomb scattering" of a rapidly

moving, light star by a heavy star (Peters 1970). During the encounter and

slight deflection, the light star emits "gravitational bremsstrahlung"

radiation. For stellar velocities near the speed of light, the radiation is

strongly peaked in the direction of the star's motion [(half-angle)

(1-v2 )2]. A second example (Peters 1972) treats masses in close orbits,

but the attractive force between them must be non-gravitational. (If it
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were gravitational it would be "strong" and the weak-field limit would not

apply). Here there is also a forward beaming of the radiation.

Rapidly changing, strong field sources. -- (Examples: the fall of

matter down a black hole; neutron stars in close orbits at relativistic

velocities.) For these cases there is no standard technique of analysis.

The slow-motion formalism is invalid -- though one hopes that, with an ad

hoc "cutoff" of radiation at the Schwarzschild radius, it will give a rough

indication of the energy, spectrum, and duration of the waves (see e.g.,

Ruffini and Wheeler 1971). Linearized theory is also invalid -- but is

also often used, with cutoff, to get rough estimates. The only fully reli-

able calculations yet performed for rapidly changing, strong-field sources

are calculations of small perturbations about stationary equilibrium con-

figurations: small-amplitude pulsations of fully relativistic neutron stars

(Thorne 1969); the gravitational collapse of an object, with small non-

spherical perturbations, to form a black hole (de la Cruz, Chase, and Israel

1970; Price 1972a,b); the fall of a small object down a much larger black

hole (Zerilli 1970; Davis, Ruffini, Press, and Price 1971); small objects

in unbound, hyperbolic orbits near a black hole (Misner 1972). Such
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calculations are often simplified -- for order-of-magnitude estimates -- by

replacing the gravitational wave equations by a much simpler scalar wave

equation (Christodoulou 1971, Price 1972a).

Equation (9) indicates that a rapidly changing, strong-field source

will emit a far greater power in gravitational radiation than will a slowly

changing or weak-field source of the same mass. The power, in order of

magnitude, may be as large as the "natural" power L0 (eq. 7), but it probably

cannot become much greater than LO
.

Much effort should be put into the

development of new techniques for analyzing rapidly changing, strong-field

sources.

4. ASTROPHYSICAL SOURCES OF GRAVITIONAL WAVES

This section describes the authors' theoretical estimate of the

characteristics of the gravitational-wave flux at the earth. Our estimate(--

"guess" is probably a better word--) is based on a survey of the literature on

theoretical analyses of astrophysical sources of gravitational waves. We

advance our estimate with a full expectation that it is wrong in many, if

not most respects. (One is by now accustomed to startling surprises in

observational astronomy -- some more fantastic even that the wilder dreams



of theorists') However, we feel that an estimate is needed to act as a

"foil" against which to plan, design, and analyze experiments.

In our discussion of the expected radiation (this section) and of

methods of detection (§§ 5-6), we shall divide the gravitational-wave spec-

trum into bands, ranging from the "extra-low frequency" (ELF) band of 10
-

?

to 10-
4

Hz, up to the "very-high frequency" (VHF) band of 10 8-1011 Hz.

Table I lists the bands and their characteristics, while Table II summarizes

the expected and hoped-for radiation in each band. The ideas and calculations

underlying Table II are described in the text below -- beginning with sources

which certainly exist, and working down to sources which could exist but

seem unlikely.

A. Sources known to Exist

Nuclear bomb explosions and other terrestrial sources. With the possible

exception of highly sophisticated nuclear explosions at very close range

(Wood et al. 1971), and the barely-conceivable exception of certain laser-

; Braginskii and Rudenko 1970)

like devices (Nagibarov and Kopvillem 1967a,b, 1969 , all terrestrial sources

of.gravitational waves are far too weak for any detector which has yet been

invented. (See Weber 1961; Ruffini and Wheeler 1971; MTW.)
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Binary star systems. -- All known binary star systems have periods

longer than one hour, corresponding to X/L - (cL/GM) > 10. Thus, they

change so slowly and have such weak internal fields that to high accuracy

one can analyze them using equations (8)-(14). Such an analysis (Peters and

Mathews 1963) predicts a power output of

L G 5= 32 G n3 f(e)L = (
3

.0OX 1033 erg) (! I- M ) / 1 hour) f(e) 15.

Here M and 4 are the total and reduced masses of the system

M = ml + m2, = mlmM; 16.

a is the orbit's semi-major axis; P is the period; and f(e) is the following

function of orbital eccentricity

73 2 37 4 27/217.
f(e) = (1 2- e + - e )/(1 - e7.

The radiation is emitted at a "fundamental" frequency equal to twice the orbital

frequency, and at harmonics of the fundamental up to order - 3 for e = 0.5 and , 10

for e = 0.7. The radiation is strongest at periastron, and thus radiation

reaction tends to circularize the orbit. If gravitational radiation is the

dominant force changing the orbital period, and if the orbit is nearly

circular, then the orbital period will decrease at the rate
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1 dP 96G im 2( 1 i2/3 (Ihr 18.
P dt 

=
5 .5 ~-=7 I MI I PI

c a 2.8 x 10 yr MO MO I

However, the problem for short-period binaries is more complex: As the orbit

shrinks by radiation reaction, one star may encroach on the other's Roche

surface, leading to a mass transfer from one star to the other, which can

markedly effect the evolution of the system (Faulkner 1971, Vila 1971).

There may also be mass loss to infinity.

As received on earth, the energy flux and dimensionless amplitude of

the waves from a binary system are

2 4/3 p 1-10/3 r - 2

(2. x cm s1ec )()( )M) ( 1 hour) ( 1 0 0 pc f(e) 19.

+ max x maxh = [(h+ max
)

2 +(hX max) 

= 1.4 X 10 ( ( M )2/3 100 pr 1 f(e) 20.
h\ hou r1 100 pcfe

Braginski (1965) and Ruffini and Wheeler (1971, p. 128) have compiled small,

incomplete lists of spectroscopic binaries which emit strongly; but no one

has attempted a thorough compilation. The most powerful emitters in the

lists have orbital periods P - 8 hours and produce fluxes at Earth of
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7 1 -
1

2
to 10

- 1 0
erg/cm2 sec, corresponding to amplitudes h of 10- 2 2 to

-21
10 . Mironovski (1965) has calculated the total flux bathing Earth from

all binary stars with P > 1 hour. Assuming that the Galaxy contains

2 107 WUMa-type binaries, he finds total 1 0 - 7 ergs/cm2 sec with a

spectrum peaked at a wave period of about 4 hours. Binary stars with periods

shorter than 1 hour will be destroyed so quickly by fusion and/or radiation

damping that (i) the failure of astronomers to find any such systems is not

surprising, and (ii) one cannot with any confidence expect even a single

binary star with P < 1 hour, close enough to produce 9 > 10
10

erg/cm sec.

Pulsars. -- To a high degree of precision, one expects the neutron

stars in pulsars to be symmetric about their rotation axes. This is un-

fortunate, because only deformations from axial symmetry can produce a

time-changing quadrupole moment and thereby radiate gravitational waves.

Ipser (1970) presents a detailed mathematical treatment of the radiation

produced by a given deformation; but for our purposes order-of-magnitude

estimates will suffice. [These estimates are due to Melosh (1969), Ostriker

and Gunn (1969), Ferrari and Ruffini (1969), Shklovski (1969).] If one
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idealizes the neutron star as a slightly deformed, homogeneous sphere with

moment of inertia I, rotation period P, and ellipticity

e
2

(difference in two equatorial radii)
2 (mean equatorial radius)

one obtains for the power radiated

0.033 sec2 G 32 (2r 38 erg) 44 )_ ( )( e / p 1.
5 c5 sec 4 2)lsec4(-31

By far the most promising pulsar is NP0532 (the pulsar in the Crab nebula);

it has the shortest period (0.033 sec) and is the most likely to be deformed.

The crucial issue is the magnitude of the non-axial deformation e. An upper

limit of e < 10- 3 comes from the demand that gravitational radiation reaction

brake the stargs rotation more strongly than the observed braking. A lower

limit of E > 10 1 1 comes from the deformation due to poloidal magnetic pressure

but note the error in equation (4) of Melosh and hence in his numerical results).

(Melosh 1969;k Theoretical analyses of the strength of a neutron-star crust,

and the theoretical interpretation of jitter and gliches in the period of

NP0532 as due to starquakes, suggest an ellipticity in the equatorial plane

of E ~ 10 to 10 [cf. Ruderman (1969), Baym and Pines (1971), Pines and

Shaham (1972)]. The corresponding values of flux and amplitude at Earth are
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< 3 X 10-7 erg h < 0.7 X 10 24 (slowdown rate)

cm sec

10- 11 to 3 X 1015 erg h 10-26 1-28 crystal strength)
2 1 t1 and starquakes

cm sec

-> 3 X 10-
2
3 h 0.7 X 10- 3 2 (magnetic pressure) 22.
cm sec

Because the luminosity varies as P- 6 the gravitational waves from other known

pulsars should be at least - 400 times weaker (in flux Z) than those from the

Crab. Correspondingly, a "newborn" neutron star will emit much more strongly:

At a time t after its birth, its gravitational wave luminosity is roughly

estimated by

(l X 1044 c2\1/2 -3 106 \3/2
-( erg/sec)\j gmJ ( (+ 104 sec} 23.

j 9,/I \E\t + 104 sec

(cf. Ostriker and Gunn 1969). This estimate begins to fail for t > 10 years

as electromagnetic braking processes become important. Note that

L > 10 erg/sec holds for days after formation. For pulsars in our galaxy

(distance - few kpc) this corresponds to 1 erg/cm sec, h - 10-
2 2

. In

the Virgo cluster neutron stars should be born about once each month,

giving 10- 6 erg/cm
2
sec. h 10- 2 5.

Supernovae and the birth of neutron stars. -- Some, if not all, supernovae
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produce rotating neutron stars (pulsars). The gravitational binding energies

of rapidly rotating neutron stars are typically in the range 0.01 to 0.3 M c

Pethick, and Sutherland

(Hartle and Thorne 1968; Baym, 1971). A sizable fraction

of this binding energy is probably emitted as gravitational waves during and

shortly after the collapse which triggers the supernova. Ruffini and Wheeler

(1971, pp. 127-140) list a variety of processes which might contribute to

the radiation: (i) initial asymmetric implosion of the stellar core if

asymmetric; (ii) possible fragmentation of the core into several large "chunks",

due to its rapid rotation and high degree of flattening; (iii) the orbital

chase of chunk around chunk; (iv) the collision and coallescence of chunks

as the angular momentum of the system is carried away by gravitational waves;

(v) the birth of neutron stars out of core or chunks. In its first seconds a

neutron star could be in a non-axisymetrical Jacobi-ellipsoid type configura-

with E - 1/2, period p - 1 msec, and gravitational luminosity - 1051 erg/sec

[Ruffini and Wheeler (1971) p. 146; for detailed treatment of radiation from

Jacobi ellipsods, see Chandrasekhar (1970a,b,c)]. Its pulsations might also

generate significant radiation (Chau 1967, Thorne 1969). Whatever the pro-

cesses which actually occur, the waves will probably come off in several
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broad-band bursts with frequency v - 103 Hz to 10 Hz, with duration for

each burst - 10
- 3

sec to 1 sec. and with total duration for the entire pro-

cess of a few seconds. (The reason for the short duration is the high

effectiveness of radiation-reaction forces for a system so near its

Schwarzschild radius.) If the endproduct of the stellar collapse is a

black hole rather than a neutron star, the radiation emitted will be simi-

lar. Note that for a burst of frequency - 103 HZ, which carries off Mc2

of energy in a time interval At, the flux and amplitude at Earth will be

(5 X 0 g2 0.03 M 0.1 sec) (0 pcr
cm sec 24.

24.

<(5 0 OMs) (0 1 i (O pc
Once a neutron star has been formed, its rotation can produce gravitational

waves of gradually increasing period and decreasing amplitude (see previous

section).

Explosions in quasars and nuclei of galaxies. -- For a (nonspherical!)

explosion of energy E and characteristic duration T, equation (9) predicts

the gravitational-wave luminosity
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L - (l/L ) (E 
2
/-r2 25.

(As before Lo = c /G = 3.63 X 1059 erg/sec.) Ozernoi (1965)-- using a more

elaborate model than our rough order-of-magnitude formula -- conceives of quasar

with
59 8

explosions!E 10 ergs, -r 10 sec, and a resulting gravitational-wave

45
luminosity L - 10 ergs/sec. For explosions in the nucleii of galaxies

(e.g. M82) he takes E = 105 ergs, = 108 sec and obtains L - 1037 ergs/sec.

Given that our present theoretical understanding of quasars and galactic

nuclei is essentially nil, these estimates must be considered as only sug-

gestive. On the other hand, the observational evidence for "explosions" on

galactic scales seems uncontestable.

Atomic and molecular processes. -- The interactions of particles, atoms,

and molecules generate gravitons by processes qualitatively the same as those

which generate photons. Unfortunately, photon processes typically dominate

by a ratio - Gm2/e
2

_ 10- 4; thus 10 photons are produced for each graviton.

(Of course, this is not true for the "classical" gravitons generated by the

bulk motion of electrically neutral matter.) If they are of no practical

interest, microscopic gravitational interactions are nonetheless fascinating
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in principle: For analyses of thermal bremsstrahlung from a hot gas see

Weinberg (1965), Mironovski (1965), Carmelli (1967), Barker, Gupta, and

Kashkas (1969); for gravitational waves from lattice vibrations in solids

see Halpern (1969); for gravitational waves from particle-antiparticle

annihilation see Ivanenko and Sokolov (1947, 1952), and Ivanenko and Brodski

(1953); for gravitational synchrotron radiation from charged particles

spiralling in magnetic fields, see Pustovoit and Gertsenshtein (1962). It

is possible that microscopic interactions might someday be useful in detect-

ing supra-VHF (e.g. optical-frequency) gravitons, if any could be generated.

A transition stimulated by a graviton (in rotational levels of a molecule,

say) might be followed by an electromagnetic transition and by detection

of the resultant photon. (See Nagibarov and Kopvillem 1967a,b, 1969; Braginskii and
Rudenko 1970.)

B. Sources Which Probably Exist

Stellar collapse with little optical display. -- When one tries to

build computer models of supernovae triggered by stellar collapse, one

often achieves collapse without producing a supernova-type optical "display"

[see, e.g., Arnett (1969); Wilson (1969)]. It is quite possible that
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stellar collapse without bril-

liant optical display is more common than supernova explosions. Assuming

that the distribution of stellar masses is the same throughout the Universe

as in the solar neighborhood, and ignoring the effects of mass ejection in

late stages of stellar evolution, one obtains (Zel'dovich and Novikov 1971, §13.13)

an upper limit of 7 stellar collapses per galaxy per year. In the nuclei

of galaxies, where conditions are quite different, the frequency of collapse

might be higher than this. Each stellar collapse will produce bursts of

gravitational waves similar to those from supernovae -- though in the case

of a massive star (M > 20 M ) the energy output might be several solar rest

masses rather than several tenths. Once a black hole has formed, it can

swallow surrounding matter, emitting a chirp of gravitational radiation each

time it does so (Zel'dovich and Novikov 1964; Davis, Ruffini, Press, and

Price 1971). But black holes produced by normal stars (mass < 100 M
O
)

are so small (< 300 km) that, before they can swallow an object, they must
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break it up into "bite-sized" pieces. As a result, the radiation from each

swallow should be far less than from the original collapse.

Condensation of galaxies. -- Ruffini and Wheeler (1971, p. 141) have

made a rough estimate of the gravitational waves generated when galaxies

condensed out of the expanding primordial gas:

X - 1023 cm, Y < 10- 2
erg/cm2sec, h < 1 x 10 7 26.

The flux and amplitude might be considerably less than these limits. Note

that over a human lifetime these gravitational "waves" will be essentially

static, a constant gravitational stress-field.

Primordial gravitational radiation. -- In the earliest stages of the

universe gravitational radiation may have been in thermal equilibrium with

other forms of matter and energy. Thus one might expect a cosmological

black-body spectrum of gravitons like the 3 OK photon background. Unfortun-

ately, as Matzner (1968) has pointed out, the current temperature of the

graviton background should be much less than that of the photon background:

Tgrav Tph ton(2/N)1/3 < 1.6 OK 27.

Here N is the number of modes (including, e.g., particle-antiparticle pairs),
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which were in equipartition at the time the gravitons decoupled, but which

decayed to photons in the subsequent expansion. If all known particles were

in equilibrium, then N is > 102 to 1 0 ; Matzner's lower limit is N > 16,

derived from the number of quark states. A thermal graviton background of

this type is certainly undetectable with current or foreseeable technology.

It is conceivable, however, that the Universe began sufficiently chaotic

that there were large-amplitude modes of gravitational waves which never

became thermalized. [Cf., e.g., Misner (1969); Zel'dovich and Novikov (1972).]

It seems likely that any such waves will by now have suffered such great

redshifts that they are undetectable and play no significant role in the

Universe (cf. Ruffini and Wheeler, p. 143). But one is so ignorant of

conditions in the initial big-bang that it is dangerous to claim any firm

conclusions.

C. Sources Which Might Exist

Huge black holes in nuclei of galaxies. -- Lynden-Bell (1969) has

suggested that violent activity in the nucleii of galaxies may produce

(-- or may be produced by --) huge black holes, which subsequently accrete
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matter from their surroundings. In particular (Lynden-Bell 1969, Lynden-

Bell and Rees 1971) our own galaxy might contain a black-hole nucleus of

- 10 to 108 M . As any object falls into such a black hole, it will emit
0

a burst of gravitational radiation. For simple radial infall into a non-

rotating black hole, the total energy radiated is

E = 0.01 (m/M) mc2 = (1044 ergs)(m/M )2(M/108 M)8.

where m is the mass of the infalling object and M is the mass of the hole

(Davis, Ruffini, Press, and Price 1971, Zerilli 1970). If the fall is non-

radial or the hole is rotating (Bardeen 1970), the numerical constant 0.01

is probably somewhat larger, but the dependence on m and M is probably the

same. The duration of the burst emitted during infall is At - 10 GM/c
3

104 sec(M/108 M ); its frequency is probably not much higher than l/At;

and its bandwidth is - l/At (Misner and Chrzanouski 1972, Bardeen et al.

1972, Ruffini et al. 1972).

These results make such a source seem fairly mundane. However Misner

(1972) points out that the radiation will be quite different if somehow one

can inject an object into a highly energetic trajectory (much more energetic

than simple fall from infinity can provide). Then the object can emit strong,
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beamed gravitational synchrotron radiation with frequency much higher than

c3/GM. (Cf. Press 1971.) Misner would like to explain Weber's observations

by means of such radiation, but the model faces very serious difficulties:

How can one achieve the large initial injection energy? How can one avoid

difficulties with the Roche limit?

Black holes in globular clusters. -- Wyller (1970), Cameron et al.

(1971), and Peebles (1972) have discussed the possibility that large black

holes might be formed in globular clusters and might congregate in the centers

of the clusters. Gravitational waves would result from the infall of other

objects into the holes (see above), or from collisions or near encounters

between the holes and between holes and stars.

Superdense clusters. -- More extreme models (motivated by Weber's

observations) have been constructed by Kafka (1970) and by Bertotti and

Cavalieri (1971). They imagine a very dense cluster of black holes and/or

compact stars, in which near encounters occur frequently (several times

per day), producing strong bursts of gravitational radiation. Of course,

the model clusters are so designed that their output resembles what Weber

sees. The difficulty with these models (G. Greenstein 1969) is that a
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cluster dense enough for frequent collisions must evolve so rapidly that

9
its active lifetime would be far shorter than 10 years. Conversely,

collisions between black holes in a normal, non-relativistic cluster would

be extremely rare.

When two black holes do collide -- whether in a superdense cluster or

elsewhere -- they probably release a substantial fraction of their rest mass

in a gravitational-wave burst of duration - GM/c3 , and of frequency - band-

width - (duration)- , where M is the total mass of the holes. Hawking (1971)

nonrotating

has derived an upper limit on the energy radiated: for two black holes of

equal mass m, Erad < (2 - 2) mc 

Coherent conversion of electromagnetic waves into gravitational waves. --

Gertsenshtein (1962) and Vladimirov (1964) have pointed out that, when an

electromagnetic wave propagates through a region with a static electric or

magnetic field, the electromagnetic wave gets coherently\ (but slowly) con-

verted into a gravitational wave. Unfortunately the effect is so weak that it

is probably of no practical interest. However, if strongly charged black

holes [e - M in the notation of Christodoulou and Ruffini (1971)] can exist,

despite their intense electrostatic pull on surrounding plasma, then as an
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electromagnetic wave propagates outward from near the surface of the hole

toward "infinity", its conversion into a gravitational wave will be near

100 per cent effective.

5. GRAVITATIONAL-WAVE RECEIVERS

We turn now from the speculative to the practical: How can gravitational

waves be detected? Weber (1960, 1961), is responsible for the pioneering

detection schemes, which involve vibrations of the Earth and vibrations of

cylinders. More recently, since 1969, Weber's apparent success has generated

vigorous activity by perhaps 15 other research groups to design new detection

schemes and improve on Weber's old ones. In this section we will review the

various schemes which have been proposed, we will describe their relation-

ships to each other, and the current state-of-the-art in each, and we will

speculate about the future prospects of each. As background for the dis-

cussion we will have to review a number of basic ideas, well known to the

experts in the field, which do not seem to have appeared explicitly in the

literature before.

A gravitational wave is in essence a propagating field of stresses.
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When this field acts on a physical system ("antenna"),

it produces displacements and motion; the stresses produces strains. Any

device which monitors these strains we shall call a "displacement sensor".

The sensor and the antenna together make up a gravitational-wave receiver.

Free-mass antennas. -- The simplest antenna for gravitational waves con-

sists of two free masses separated by a distance o. Although such an

antenna is not terribly practical, we shall discuss it in detail because

it points the way toward more sophisticated and more practical antennas.

Locate the masses in a plane perpendicular to the direction of wave

propagation; if the wave is that of equation (5), for example, the masses

could be at x = 2± /2, y = z O. Then the stresses of the wave will pro-

duce a relative motion of the masses; their separation will vary as,

= 2o + h+(t) o 29.

[Eqs. (5) and (3), plus Newton's law F = ma]. Thus, the dimensionless wave

amplitude h+(t) determines the system's strain directly:

Af/fo = h+(t) 30.

If the masses were oriented differently, the antenna would respond to a linear

combination of the two polarizations h+ and hX instead of purely to h+

(see Fig. 1). If the separation were not normal to the propagation direction,

32



the displacement Al would be reduced by a factor sin e. [See below; also

Ruffini and Wheeler (1971), p. 113.] It is quite general that the dimen-

sionless field strength h [(h+)2 + (h)21/2 sets the scale of the dimen-

sionless strain AO/f which one must measure. In the special case of mono-

chromatic gravitational waves (e.g. from binary stars or pulsars), one can

use resonance effects and sophisticated antennas to make A2/f somewhat larger

than h. However, for signals of wide bandwidth (e.g. for waves from any

collision, collapse, or explosion; for Weber bursts; for waves of cosmolo-

gical origin) Ahe/ is not much larger than h, no matter how sophisticated

the antenna. We will discuss this point in detail below.

How far apart should one locate the free masses? The answer depends

on how one proposes to measure their displacements; but it is generally

optimal to space the masses as distant as the displacement sensor will allow,

but no more than half of a wavelength of the gravitational wave. Consider,

for example, two masses separated by astronomical distances (the Earth and

Moon, or the Earth and a spacecraft), with displacement monitored by radar

or laser techniques. If the wavelength of the gravitational wave is much

larger than the separation, the analysis of equation (29) completely describe
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the system, and the motions of the masses generate doppler shifts which are

measurable in the ordinary way. As the size of the system approaches half

a wavelength, the analysis becomes more complicated, because the gravita-

tional wave changes appreciably during the time that photons are in transit

between the masses, and cancels all except "half a wavelength's worth", or

less, of their doppler shift. Thus, the magnitude of the observed displace-

ment is typically maximal for half a wavelength separation and varies sinu-

soidally for larger distances. (See, e.g. Kaufmann 1970.)

For laboratory or earthbound experiments, the condition (apparatus

size) << (wavelength) is essentially automatic, since all important astro-

physical sources lie in the MF band and below (wavelengths > 3 km). Hence-

forth we will assume tacitly that (apparatus size) << (wavelength), unless

stated otherwise.

Non-mechanical displacement sensors. -- How can one measure the separa-

tion of free masses? Over Earth-size distances and larger, the only useful

techniques would appear to be radar ranging, laser ranging, and laser inter-

ferometry.
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Spacecrafts are routinely tracked by radar with precision in velocity

("Doppler") of several millimeters per second and precision in distance

("range") of - 10 meters. Either method of tracking, range or Doppler,

permits the detection of strains h > 10 in the VLF region and below

(VGW 10 
- 2

Hz). However, such radiation can be ruled out on energetic

grounds with fair confidence. For example, the tracking residuals reported

by Anderson (1971) -- if due to gravitational waves as he suggests and we

strongly doubt -- would correspond to an integrated energy flux of

> 6 X 103 ergs/cm per event (Gibbons 1971). If they were to originate in

the galactic center, such waves would carry 3 X 10 M c per event -- many

orders greater than even Weber's events. (The waves could not be cosmolo-

gical: their energy density would be inconsistent by many orders of mag-

nitude with the observational limits on the Hubble constant, age, and decelera-

tion parameter of the Universe.) Radar technology, therefore, is not a very

good detection scheme -- not even with the most optimistic estimates of

improvements during the coming decade.

Laser ranging via lunar reflector is now performed routinely with pre-

cision of - 30 cm. Such ranging can give information on waves with periods
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of a few seconds, and h > 1 X 10-9; but again the existence of such waves

can be ruled out on energetic and cosmological grounds.

Laser interferometry is considerably more promising for experiments in

near space (earth orbit) or for ground-based measurements (Moss, Miller, and

Forward 1971). It is straightforward to measure displacements of one inter-

ference fringe, i.e. - one wavelength of laser light, over moderately large

distances. However this sensitivity compares poorly to other displacement

sensors: for example Weber detects strains of -10 1 6 piezoelectrically, while

1016 laser wavelengths is 6 X 106 kmn! To be useful in gravitational-wave

detection, laser interferometers must measure very small fractions of an inter-

ference fringe. The theoretical limit on interferometers of this sort is

determined by photon fluctuation noise

Almin ~ //N (1 X 10 2 (lasr pwer 2 (Bandwidth)l/2 31

where A is the wavelength and N is the number of photons in a measurement.

This precision improves with an increase in the laser power, or with an

increase in the averaging time (i.e. narrower bandwidth). The bandwidth

factor suggests that laser techniques may find application to pulsar (highly

monochromatic) waves in the LF band, or to VLF signals in general.
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As of 1971, the limiting sensitivity (eq. 31) has been achieved experi-

mentally in order of magnitude with laboratory-sized apparatus, fractional

milliwatt lasers, and bandwidths of a few Hz [Moss, Miller, and Forward

(1971) and references cited therein; see also Moss (1971)]. This corres-

ponds to measured distances of 10 cm or 5 X 10 fringe. Such a sen-

sitivity, if it could be achieved in earth orbit over a baseline of 103 km,

could detect the radiation from known short-period binaries (e.g. i Boo with

h - 6 X 10 ).

Almost-free antennas. -- We begin the transition to more complicated

antennas with the question: How "free" must the masses be in a free-mass

antenna?

Only for experiments in space can one imagine anything like ideal free

masses. Otherwise, the masses must be held in place by a suspension which

allows them to move in response to the wave (Fig. 2b). There may also be

a mechanical connection between the masses, part of the suspension proper or

part of the displacement measuring device. For example, one might place a

piezoelectric rod between the masses and measure their displacement by

monitoring the strain in the rod. One can analyze how the suspension and
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mechanical coupling affect the antenna by studying the system's normal modes

of oscillation. Some normal modes have no influence on the wave-induced

displacements, so one can ignore them. [Example: the modes associated with

the
vibrations in the x-z plane for the detector of Fig. 2b.] Compare/frequencies

v
n
of the remaining modes with the characteristic frequency of vGW of the

gravitational waves. If v << vGW for all v , then the system will respond

to the waves as if the masses were free. If some v
n
have vn >> vGW their

modes can be treated as rigid, but the masses will be "free" in the remaining

modes (v
n
<< vGW). In practical work it is often sufficient to satisfy the

inequalities by factors of 3 or 5. If there are modes for which neither

inequality holds, vn - vGW' then the system is no longer "almost-free".

Rather, one says that it is resonant. We will treat resonant systems below.

A promising example of an almost-free antenna is a dumbbell-shaped bar

(Rasband et al. 1971) or hollow square (Douglass 1971) monitored in the fre-

quency band between its fundamental v
0
and its first harmonic v1. (Note:

for such antennas VO/V
1
<< 1.)

Mechanical dissipation in the suspension and coupling of an almost-free

antenna produces thermal noise fluctuations in the distance between the
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masses. If the conditions for an almost-free detector are met, so that the

wave frequency vGW is not near any of the detector frequencies v n, then this

noise fluctuation at temperature T is given roughly by

2 1 1 1 1

16 10 z) H T ec 10 kg BW03
Ai (4 x 10OK2 ns cm) BW) 3lb.

Athermal VGW 3000K1 (m1 e)10 Hz 3b

Here -T is a typical dissipation time for those normal modes with frequencies

<< vGW (but driven at vGW), M is the mass of the detector, and BW is the band-

width monitored.

Mechanical displacement sensors. -- Free-mass antennas require non-

mechanical displacement sensors (e.g., lasers); but almost-free and resonant

antennas permit a mechanical link between the test masses. This opens the

way for other types of displacement sensors. Braginskii (1968, 1970)

divides displacement sensors into two classes: transducers,

which convert the mechanical energy of the detector's motion to some other

form of energy; and modulators, which make use of the detector's mechanical



motion to control an external source of energy. The output of a modulator

is not limited to the energy extracted from the gravitational wave. Examples:

a piezoelectric crystal, a bar magnet and moving coil are transducers; a

laser interferometer, and a resonant circuit with mechanically varied capa-

citor are modulators. Although Weber's experiment uses piezoelectric trans-

ducers, most experiments designed subsequently make use of modulators

(Braginskii 1971; Hamilton 1970a,b).

The most useful measure of a displacement sensor's performance is the

function A min(T), the minimum detectable displacement in an averaging time

t (with signal/noise = 1). In many cases the sensor noise will be "white"

and the function of averaging time will be the typical square-root random

walk

Ali(I min )/min(2) = (T2/T1 )1/2 32.

In these cases the useful figure of merit is the constant

S = Al i (T) 1/2 33.

with units cm/(Hz) 1/2, which we call the displacement sensitivity. (Notice

that the inverse time resolution 1 is the bandwidth Aw of the displacement

sensor, not the frequency at which it operates which is usually much higher.
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For example, Weber's piezoelectric transducers measure displacements of

-15 -1
10 cm at a frequency of 1660 Hz, with a bandwidth Aw = T of a few Hz.

Gibbons and Hawking (1971) have considered in some detail the theore-

tical limits on piezoelectric sensors, and similar considerations limit

other transducer sensors. The key idea is that the electrical output of

a transducer is subject to thermal ("Johnson"; "Nyquist") noise, which

increases with decreasing averaging time (i.e. with increasing bandwidth).

This noise power per unit bandwidth is a constant (- kT), while the signal

power is proportional to the volume of piezoelectric crystal. As the crystal

volume is increased, it comes to store more and more of the antenna's mechan-

ical energy. A limit is reached when the crystal stores all the mechanical

energy, and this translates into a rigorous limiting sensitivity for piezo-

electric sensors:

S pi dezo (kT B tan b/M w3) 1/
2

min piezo

-16 cm piezo T 1/2 tan 5 1/2/ B 1/2
1.5 X 1016 Hz 0_ 5 /10 cm/statv300 OK X 10-/ 1012 dyne/cm 2/

r3 1/2 4 (h 3 i s 32
0 kg 10 rad/sec) 34

Here diezo (the piezoelectric strain constant), B (the elastic modulus)
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and tan 6 (the dissipation factor) are properties of the material; and w

is the frequency of the wave. The experimenter is able to adjust only T

(the temperature) and M (roughly, the total mass of the gravitational-wave

antenna).

Modulator-type displacement sensors are also limited in principle in

their sensitivities (Braginskii 1968, 1970). However, the limits of principle

are many orders of magnitude below current technological limits, so we will

not consider them here.

One cannot understand the technological limits on modulator-type sensors

without first exploring their possible configurations. Modulator-type sensors

require three elements: an oscillator, which supplies a highly monochromatic,

oscillating electromagnetic signal; a resonator, which is coupled to the

gravitational-wave antenna, and which modulates the oscillator output, and

an electromagnetic detector, a nonlinear component which detects the modu-

lated signal. The electromagnetic signal may be at any frequency -- optical,

microwave, radio. In the optical regime the oscillator is a laser, and the

resonator is an interferometer cavity with the separation between its mirrors
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modulated by the gravitational wave [Moss et al. (1971), see above]. In

the microwave regime one might use as the resonator a microwave cavity,

perhaps superconducting. Flexing of the cavity (produced by antenna dis-

placements) will change its resonant frequency and modulate its output.

[Dick and Press (1970) have designed displacement sensors based on this

principle.] For electromagnetic signals of radio frequency one can use an

L-C circuit as the resonator. Antenna displacements produced by gravitational

waves can be used either to vary the distance between the capacitor plates

[Braginskii's (1971) sensor works this way], or to vary the inductor, say

by moving it with respect to a ground plane [a sensor designed by Fairbank

and Hamilton works this way -- see, e.g. Hamilton (1970a,b)]. In either

case the output is a modulated electromagnetic signal. It is worth

noting the essential unity of the above three resonators, and the possibility

of constructing intermediate devices: as the wavelength A of the resonator's

oscillating (standing) electromagnetic wave increases relative to the size

interferometer

L of the resonator, one slides continuously from laserL(\ << L) to microwave

cavity (? ~ L) to L-C circuit (? >> L).

A number of displacement-sensing configurations can be built with
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oscillators, resonators, and detectors -- some with AM modulation, others

with FM modulation, and others with more complicated schemes. The displace-

ment sensitivity is limited by two factors: the oscillator noise at fre-

quencies close to the oscillator frequency where the modulated sidebands

will appear, and the noise in the demodulating detector. Thermal electro-

magnetic noise (1/2 kT) in the resonator is almost always much smaller, so

1971 sensors are only state-of-the-art limited. It appears that 1971

technology in the radio and microwave (superconducting cavity) region can

achieve a factor of - 10 better displacement sensitivity than piezoelectric

technology; and one expects that this number will increase with time as the

materials limit on piezoelectric transducers is reached, and as oscillators

and electromagnetic detectors with lower noise are developed.

Table III gives typical parameters for three displacement sensors which

have actually been built. For modulator-type sensors we can expect large

improvements over the currently measurable strains (- 10 ) during the

coming decade.

Acoustical systems: the uses and abuses of resonance. -- Thus far we

have estimated the strength h of incident gravitational waves from various
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astrophysical sources; we have seen that when a wave of strength h acts on a

free-mass or almost-free gravitational wave antenna of size Q, a displace-

ment A£l hi is produced; and we have surveyed displacement sensors and have

found that given a resolution time T, one can measure a displacement as

small as An i S --1/2 where S is the displacement sensitivity. How

should one choose T, the resolution time?

Ideally one would like to take T as small as possible so as to examine

the actual waveform of the gravitational wave as it passes. [A wide-band

(small T) gravitational wave receiver extracts more information from the

wave than does a narrow-band (large T) receiver.] But T is limited by the

condition of detectability ()due to wave > Ai .n' Thus, to detect a wavedue to wave min

of amplitude h one must measure for a time T larger than

in( sec) )2 (1 35.
( 1 0

k

sec) 510-1 6 cm/Hzl/ 7

For "burst" gravitational radiation (from collapse, explosion, collision,

etc.) Tmi
n

may be longer than the duration of the burst, so that not enough

averaging time is available to see the burst at all. Even for highly mono-

chromatic waves (e.g. pulsars) min may be unfeasably long, say years. Can

anything be done in these cases?



Yes: one can utilize a resonant mechanical system as the antenna. For

burst radiation, a resonant system "remembers" that it has been hit by a

burst (the way a bell "remembers" that it has been struck by a hammer), and

allows averaging times T much longer than the duration of the burst. For

monochromatic waves, the resonance "remembers" the last Qres cycles of the

wave (Qres is the antenna's resonance quality factor), and superimposes them

so that the displacement is increased by a factor Qres and Tmi
n

is decreased

2
by a factor Qres :

res

2 / \2 (l 2 (62 /- 26\2

= S ) = (10o sec) 16 12) ) ) 36.
i hQnres 10

-

cm Hz tres.

Notice (and we will prove below) that these two effects are disjoint. For

burst radiation, resonance does not increase the detector response Ai; it

only allows longer resolution times and hence less sensor noise.

The benefits of resonance are obtained at a tremendous cost -- the loss

of all information about the wave except one single number, its fourier com-

ponent (i.e. spectral energy density) at one single frequency, the frequency

of mechanical resonance. Only wide-band detectors can give detailed infor-

mation on the waveform or spectrum of a burst, or precise time-of-arrival
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information which can determine the source direction. If resolution time

T is increased to take advantage of the resonant antenna, one decreases

-1
the bandwidth Aw = T accordingly. Resonance is a technique of the last

resort, to be used to detect gravitational signals which could otherwise

not have been detected at all.

The force field of the gravitational wave acts independently on each

normal mode of a general resonant antenna. Describe the n'th normal mode

by its angular frequency wn, its damping time T, and its "eigenfunction"

u (x). Thus, vibrating freely in this mode the antenna exhibits the dis-

placements

Ax = u(x) sin(wnt) exp(- t/rn) 37a.

To make the eigenfunctions u dimensionless with magnitude of order unity,

impose the normalization

,r P u2 d3 x = M 37b.

where p is the density and M is the mass of the antenna. If B (t) is the

amplitude of the n'th mode, defined by

Ax = u (x) B (t) 38a.On n

then the action of the wave on the mode is described by the equation for a
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forced damped harmonic oscillator (Fig. 2c; see MTW exercise 37.11):

B + B /Tn + Wn2 Bn = Rn(t) 38b.
n nfl n

The forcing term is related to the components of the gravitational wave by

R (t) RjokoW (t) S (pM) unk d3x 39
j,k

Note that for an antenna of fixed mass M and fixed characteristic size

Q, one can maximize the displacement Al = B u to be measured by making
n n

the measurement at a point where the eigenfunction u is large. In principle

one can obtain an arbitrary amount of amplification by designing the antenna

so that u is huge somewhere [but not where much mass is; cf. eq. (37b)]; for

an example see Lavrent'ev (1969a,b). Unfortunately, this type of amplifica-

tion is not usually practical -- it is easy to draw a long, massless lever

(the perfect displacement amplifier), but not so easy to construct one; and

other mechanical amplifiers suffer similar drawbacks. Note also that unless

the normal mode-displacements u "look something like" the force diagram of

Figure 1, various parts of the integral will largely cancel, and the driving

force Rn(t) will be very small; in other words, the gravitational wave will

couple only poorly to that mode. For example, the coupling to the longitu-

dinal modes of a vibrating cylinder decreases as the inverse square of the
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mode number n, for odd n; for even n the coupling is zero, since these modes

are precisely orthogonal to the force of the gravitational wave [Ruffini

and Wheeler (1971), §7.3]. A similar power law holds for high modes of

general mechanical systems; for example, it is unlikely that gravitational

waves could excite high-mode free oscillations of the Earth without exciting

the lower modes preferentially (this point is sometimes overlooked; cf.

Tuman 1971).

Figure 3 shows the familiar Green's function solution to equation (38b).

One imagines the wave's driving force Rn(t) propagating rightward and the

(damped sine-wave) Green's function held fixed. The momentary displacement

Bn(t) is the integrated product of R and G. In Figure 3a the wave has not

yet reached the antenna, and there is no antenna response, Skip now to

Figure 3c; this is after the wave has gone by. The waveform lies completely

within the nearly sinusoidal part of the Green's function: the amplitude of

the detector's ringing measures the product of wave and sine-wave, i.e. it

measures one fourier component of the wave. Its magnitude, the quantity

the displacement sensor must measure, is AR 2 Bn(t) - hi exp(- t/rn). (To

obtain this integrate Fig. 3c twice by parts, thereby turning components
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of R into h.) As the wave marches on through the Green's function, the

ringing dies away with time constant T -- this is the time during which

one must ferret the signal from the noise in order to detect the wave at

all. Go back to Figure 3b. This is during the time that the gravitational

wave is driving the apparatus. The response depends in a complicated way

on the incident waveform: if one could measure the response with good time

resolution during this period, one could in principle reconstruct the entire

incident wave. (More exactly: the wave high-pass filtered at w , since the

antenna is essentially rigid to frequencies much below w .) Here again

one faces the issue of wide- vs. narrow-band antennas. If the resolving

time determined by system noise and sensor noise is shorter than the dura-

tion of the wave, then one can resolve the wave's structure; if it is longer

than the duration of the wave, but less than Tn, one can see only a single

fourier component of the wave; if it is longer than T, one cannot detect

the wave at all. The free-mass and almost-free antennas are special cases

of this discussion with wn + O. Their conceptual advantages are their

simple relation between detector response and incident waveform (Af/£ measures

h directly and instantaneously), and absence of the "high-pass filter" effect.
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Their disadvantage is that they cannot "remember" the wave for a long time

Tn' as a resonance can.

Figure 3 is drawn for burst radiation. For a long monochromatic train,

one would have a picture with two intersecting sine trains, and the response

would be of order

l - Bn h Qmin 40.

where Qmin is the "number of peaks" in the product, therefore the minimum

of wave "Q" and detector "Q".

In analyses of resonant antennas the concept of cross-section,

a - (energy absorbed by detector)/(energy flux in wave)

has sometimes been introduced. However, the cross section is irrelevant and

useless (i) when one deals with free-mass and almost-free antennas, and (ii)

when one uses or designs even a resonant antenna to measure more than the

single Fourier component of the wave at the resonant frequency. Thus, a

designer of gravitational-wave antennas should focus his attention on cross

sections no more than does a designer of radio-wave antennas. Cross section

is far too narrow a concept to be central in antenna design.

For detailed discussions of cross sections see, e.g. MTW or Ruffini and
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Wheeler (1971).

Thermal noise in resonant antennas. -- We mentioned above the effects of

thermal noise on an almost-free antenna. In a resonant antenna the thermal

noise fluctuations are of crucial importance. To analyze the effect of

thermal noise, one need only notice that

the antenna's oscillating displacement B (t) is linear in the driving force

(eq. 38b or 40); and that therefore the displacement B thermal(t) producedn

by Brownian (thermal) forces adds linearly to the displacement BnGW(t)

produced by the gravitational wave. The thermal-noise displacement oscillates

sinusoidally,

iw t
Bthermal(t) thermal(t) n
n n

with a slowly fluctuating, complex amplitude thermal(t) that has typical
n

magnitude corresponding to ½ kT energy in the mode:

thermal ( kT (2 X 1 0-1 4
cm) 300) k 0 rad/se 41.

n

a characteristic time scale Tn, which is the same as the damping time for free

oscillations far above thermal noise. In shorter times At the fluctuations
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obey a stochastic square-root law

!A %thermalI (At/T)l/2 i~ thermal 2.
1t An | (at/?n) / Ien 1 42.

(See Braginskii 1970 for more details.) Now an important point: if over a

time At one tries to measure a signal B GW(t), one need not have
n

GW > thermal GW thermal
Bn nGW > h; rather one need only have Bn > ma B n In

other words, the thermal noise level is not the -1 kT thermal-oscillation dis-

placement; is the fluctuation in thermal oscillation over the time of the

measurement. This explains why high Qn (large Tn) resonances are favorable

for burst radiation: not that the highQn increases the size of the signal

Al : B (it does so for monochromatic waves, but not for bursts); norn

that it decreases the amplitude of thermal 2 kT oscillations (it never does

so!); rather, the high Qn lengthens the time scale over which the thermal

oscillations change amplitude, so that a smaller burst B GW(t) can be picked

out against the smooth thermal oscillations. This thermal noise advantage

is in addition to the advantage of resonance previously mentioned, the

permitted lengthening of the signal resolution time.

The fact that fluctuations, not absolute magnitudes, determine the

noise level also explains why feedback schemes to "cool one mode of a
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detector instead of the whole detector" will not work. A feedback loop

with a characteristic timescale Tfb (> resolution time of displacement

sensor) will reduce the magnitude of the thermal oscillations by a factor

(Tfb/Tn) /2. But it will leave completely unaffected the magnitude

thermal
An I t of fluctuations on timescales At < Tfb and will therefore not

improve the noise problems for gravitational-wave bursts shorter than Tfb.

For bursts longer than Tfb the feedback will destroy the signals along with

the noise -- essentially by increasing the antenna's effective inertial

mass, while leaving unchanged the passive gravitational mass which feels

the wave.

What is the optimal sensor resolution time T to barely detect the

smallest possible burst with a resonant detector? The battle against

thermal fluctuations makes a short T desirable; but sensor noise Amin - S -1/2

favors large T. The optimal point is in between:

Sn (0.15 sec)T 1 T n /2X 10 - l cm\ 43.
Zoptimal s c thermal c) -15 /H 10 sec thermal 

(Gibbons and Hawking 1971). For wideband experiments one seeks smaller

resolution times T < Toptimal (hence needs stronger waves), so sensor noise
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increases while thermal mechanical noise becomes less troublesome. The

interesting point is that in narrow-band experiments, one need not take T

any greater than Toptima
1

.

Classes of resonant antennas. -- Here is a brief catalog of configurations

which have been suggested for resonant antennas.

(a) Distributed resonant antennas. The restoring forces and inertial

forces are distributed more or less uniformly throughout the antenna mass.

The resonant period is determined (approximately) by the sound travel time

across the mass. Examples: Weber's cylinders, rods, discs, the Earth.

(Douglass 1971, Douglass and Tyson 1971 call these "Class I" antennas.)

(b) Lumped resonant antennas. The main restoring force and main

inertial force are contributed by different parts of the system. The

resonant period of the fundamental mode can be made much longer than the

typical sound travel time, but the periods of higher modes are usually of

the order of that time. Examples: hollow squares, rings, tuning forks

(Douglass 1971; Douglass and Tyson 1971 call these "Class II"); also dumbbells

(Rasband et al. 1972); also two pendula, well separated but suspended from

a common support [Braginskii and Rudenko (1970); this antenna looks promising
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for detecting waves from pulsars; it has the advantage of a very large

Q ~ 10 .] A lumped, resonant antenna, monitored between its low funda-

mental frequency and its much higher "harmonic" frequencies, would function

as a wideband almost-free antenna.

(c) Acoustical transmission lines. Here a smoothly distributed mass

is used not as the primary antenna, but rather to carry a displacement to a

convenient place for sensing. Examples: Braginskii's (1971) cylinder has

"horns" which carry the full displacement of the cylinder ends to a capa-

citive sensor in the center. Vali and Filler (1972) have proposed using a

long resonant rail to transmit rigidly a (gravitational-wave-induced) dis-

placement over a distance of several kilometers. (The key idea is that a

resonant rail acts as if it were "infinitely rigid" between nodes of its

resonant frequencies.) This technique may find application in detecting

monochromatic pulsar waves in the LF band.

(d) Rotational resonances -- heterodyne antennas. These have been

devised by Braginskii [see Braginskii et al. (1969), Braginskii and Nazarenko

(1971)]. For a circularly polarized gravitational wave, the force diagram

of Figure 1 rotates with time. If a dumbbell rotates at half the frequency
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of the gravitational wave in a plane perpendicular to the wave, it will

always stay fixed with respect to the lines of force and be continuously

accelerated. Two independent dumbbells, rotating in the same direction,

but 900 out of phase, will experience opposite accelerations. The experi-

menter can search for the constant relative angular acceleration of the

two rods (constant so long as the angle between them does not depart signifi-

cantly from 900). Better yet, the experimenter can adjust the rods' rotation

rate so that it does not quite match the waves' frequency (all too easy to

do!); the resulting frequency beating will give oscillations in the rela-

tive orientation of the rods. One need not worry about the other circular

polarization marring the experiment. Since the other polarization does not

rotate with the rods, its angular accelerations average out over one cycle;

hence such a detector also works for linearly polarized or unpolarized waves.

Heterodyne antennas, particularly in earth orbit, may be the most practical

means of detecting waves from pulsars. They may also have application in

threshold detection of bursts, with a very long resolution time available to detect

the relative rotation after the burst has gone by (Braginskii and Nazarenko 1971).

A similar antenna has been proposed by Sakharov (1969). A nonrotating
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dumbbell is driven in its vibrational mode in resonance with a gravitational

wave. When maximally distended it experiences a torque in one direction,

and a torque in the opposite direction acts when it is minimally con-

tracted. Hence it experiences a net angular acceleration relative to local

inertial frames (gyroscopes).

(e) Surface interactions with matter. A gravitational wave interacts

with the free surface of an elastic body, producing elastic waves (Dyson

1968, Esposito 1971). In principle, the surface could be the surface of

the earth or moon, and the waves could be detected seismically. In practice

this method is not sensitive enough to be useful for astronomical sources.

However there are possibilities for improvements, e.g. using resonances

(elastic waves reflected between two surfaces) in the antarctic sheet ice

or in lunar mascons (de Sabbata 1970). These techniques might have applica-

tion for monochromatic LF waves.

Other gravitational-wave antennas. -- Fluid-in-pipe antennas, where the

force field of the gravitational wave causes a fluid to flow around the

inside of a closed pipe of appropriate configuration (e.g. figure-eight

shaped), have been considered by Press (1970). These antennas are related
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to free-mass antennas in a way that is similar to the relation between

magnetic-loop and electric-dipole antennas in electromagnetism. In the

gravitational case, however, the size of the loop is limited by the speed

of sound in the fluid, and fluid-in-pipe detectors are typically only

(v sound/c) as efficient as other mechanical detectors. (See MTW for further

details.)

This disadvantage might not be debilitating if the "pipe" is a super-

conducting wire and the "fluid" consists of conducting electrons. The wave

would induce a weak alternating current with the same frequency as the wave.

Papini (1970), DeWitt (1966), and others have considered the action of a

gravitational wave on superconducting and normal metals, from somewhat

different points of view. Papini's detector is primarily for HF and VHF

waves.

Braginskii and Menskii (1971) have devised a gravitoelectric detector

consisting of a toroidal wave guide with a monochromatic electromagnetic

wave train propagating around it. Gravitational waves, passing through the

plane of the wave guide, act on its EM wave train (much as they do on the

rods in the mechanical heterodyne detector; see above), producing frequency
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and phase shifts between different parts of the train. (See Box 37.6 of

MTW.) This detector might be useful with highly monochromatic waves in the

VHF band; unfortunately there are no known astrophysical sources of this

character.

Other gravitoelectric antennas have been described by Lupanov (1967),

Vadyanitskii and Dimanshtein (1968), Boccaletti and colleagues (1970, 1971);

these also seem ill-suited to predicted waves of astronomical origin.

Table IV summarizes the various proposed types of gravitational-wave

antennas.

Directionality of antennas; arrays. -- All gravitational-wave antennas

have quadrupole patterns of directionality: the amplitude of the response

to a given wave is a quadratic function of the antenna's orientation [Exercise

37.13 and Box 37.4 of MTW; p. 115 of Ruffini and Wheeler (1971); Weber (1970b,

1971)]. The particular form of the quadrupole pattern (coefficients in

quadratic expression) depends on the shape of the antenna and the polariza-

tion of the waves. For example, the patterns of a disc (Weber 1971) and a

sphere (Forward 1971) are somewhat less directional than those of a cylinder.

The step from "antennas" to "telescopes" requires either antennas as
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big as a fraction of a wavelength (impractical), or arrays of individual

antennas spaced over such a distance. Much detail can, in principle, be

derived from such an array. Since the frequencies are low (compared to

radio astronomy), it is not impractical to apply sophisticated numerical

techniques on-line to the output of an array. For example the directionality

of an array will not be "diffraction limited", rather it will only be "noise

limited".

Natural antennas. -- Nature provides one with a number of "natural"

antennas for detecting gravitational waves. One (earth-moon separation)

was discussed in some detail above. Others (the Earth's vibrations and

seismic activity; anomalies in the Earth's rotation; fluctuations in the

relative velocities of stars) are discussed in Braginskii's (1965) review

and in references cited therein. None of these natural antennas look pro-

mising. None give limits on gravitational-wave flux that are markedly

tighter than one gets from cosmological considerations (observed expansion

rate, deceleration, and age of Universe demand mass density p • 10 28 g/cm
3
,

corresponding to flux of waves 9 < 103 erg/cm2 sec).

Winterberg (1968) and Bergmann (1971) have argued that one might search
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for gravitational waves of LF, VLF, ELF and even lower frequency by their

action in interstellar space to produce fluctuations in the intensity of

starlight. Unfortunately, the predicted fluctuations are far smaller than

estimated by Winterberg and Bergmann. For the errors in

Winterberg's analysis see Zipoy and Bertotti (1968). Bergmann erred in

assuming that the waves produced fluctuations directly [so (amplitude of

fluctuations) o (amplitude of waves)]. Rather, it is only the energy carried

by the waves that can affect the starlight intensity; and Bergmann's equation

(3) should be corrected to read (cf. Penrose 1966)

<a2>/2 (amplitude of starlight intensity fluctuations)

/energy per unit area distance /number of coherence 1/2
~ in one coherence to X lengths between 44.
c length of waves \star Earth and star /

(h) 2 X LX (L) [(h) LH2I ( L) ()1/

Here L is distance to star, 2 is coherence length of gravitational waves, A

is wavelength of gravitational waves, and (c4/G)(h/P?)
2

is energy density in

waves. The last formula introduces the Hubble radius LH. Cosmological

observations demand (h/)
2
LH

2
1 (i.e. p < 10-28 g/cm 3). Thus, the last
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Footnote 2 (page 62 of manuscript)

The oscillating Riemann tensor produces a shear of the light rays; the

square of the shear then focusses the rays. The net focussing is propor-

tional to the energy density of the gravitational waves and is the same as

if the waves had been electromagnetic or neutrino; see Penrose (1966).



formula shows explicitly that the amplitude of the fluctuations can never

exceed - 1 and under all reasonable circumstances will be << 1. The effect

is not at all promising. (See Zipoy 1966 for a more complete treatment,

which is basically correct but overly difficult.)

63



6. THE WEBER EXPERIMENT

Since 1969, Joseph Weber (1969, 1970a,b,c, 1971a) has observed sudden,

coincident excitations of two resonant gravitational-wave antennas spaced

1000 km apart, one in Maryland, the other near Chicago. If these excitations

are caused by gravitational radiation, then the characteristics of each

burst are about what one expects from a "strong" supernova or stellar

collapse somewhere in our Galaxy; but the number of bursts observed is at

least 1000 times greater than current astrophysical ideas predict! Weber's

observations lead one to consider the possibility that gravitational-wave

astronomy will yield not just new data on known astrophysical phenomena

(binary stars, pulsars, supernovae) but might discover entirely new phenomena

(colliding black holes, cosmological gravitational waves, ???). In fact,

one is offered the tantalizing possibility that these new phenomena might

dominate all other forms of energy generation and might force a major re-

structuring of our understanding of galactic and cosmological evolution.

The possible resolutions of the present theoretical and experimental

crisis fall into five inclusive categories: (i) Weber's events are not

caused by gravitational waves. (ii) The events are caused by gravitational



waves, but the flux is somehow much less than it appears. (iii) The deduced

flux is correct, but the deduced total luminosity is wrong (i.e., the source

is either nearer us than we believe, or the radiation is "beamed" or focussed

in our direction). (iv) The deduced luminosity is correct, so in the present

epoch (at least) our Galaxy (?) emits orders of magnitude more gravitational

radiation than electromagnetic. (v) The waves are of cosmological origin.

Here we briefly summarize the observations as reported in the literature and

elaborate on the possibilities.

Weber's detectors and the events. -- The detectors are aluminum cylin-

ders, typical size 66 cm diameter by 153 cm length. The end-to-end strain

is monitored by piezoelectric crystals bonded around the girth of the

cylinder (Table III). In our terminology, (see above) the cylinders are

distributed resonant antennas with w/2n = 1661 Hz, Tor 10 sec. The antenna

output is monitored with a resolution time T >j 0.1 sec and strains of 10 17

are detected, so the implied sensitivity S is roughly - 5 X 10 1 6 cnmHz2 .

The thermal noise displacement is t10 I| - 1 cm, so the resolution

times chosen are about optimal for this device (eq. 42).

The observed events occur ~ 1 per day. The coincidences disappear
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when one introduces a time delay of 2 seconds into the output of one detector.

Since no structure within the time resolution T has been reported, an experi-

mental limit on Qwave (the wave's ratio of frequency to bandwidth) is

Qwave < 200. Recently, Weber (1971b) has observed coincident excitations

on another antenna at 1580 Hz. This would indicate Qwave < 20.

GW 
-
1 5

The coincident events exhibit typical displacements of Al = BG _ 5 X10

cm. Coincidences occur most frequently when the axes of the cylinders are

perpendicular to the direction of the galactic center. The observations are

of randomly polarized waves

consistent with the hypothesis of a single point source/in that direction

(or in the opposite direction -- waves propagate through the earth unimpeded).

A source < 10° from these directions cannot (in late 1971) be excluded; but

sources farther away can unless they are consistently polarized.

The case for gravitational waves. -- Weber has tested for the possibili-

ties of seismic excitation of his detectors, and excitation by cosmic rays

and by radio waves, all with negative results. Nevertheless, in excluding

non-gravitational sources there is always the possibility that something has

been overlooked. Therefore it is important to find direct evidence that the

excitation is gravitational.
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One such bit of evidence is offered by Weber's scalar-wave experiment

(1971a). There a disc antenna (not a cylinder) was used to search for

scalar gravitational radiation [excluded in Einstein's theory, but predicted

by, e.g., the theory of Brans and Dicke (1961)]. However, a disc is not a

"perfect" scalar antenna; it also responds to ordinary tensor gravitational

waves, but with a somewhat different directionality than a cylinder. Weber's

evidence for

experiment found nokscalar radiation; perhaps more interesting, the response

tensor
of the disc was consistent with a point source of/gravitational waves in the

center of the galaxy. Since it would not be easy for a non-gravitational

mechanism to "mimic" the different directionalities of disc and cylinder,

this is direct -- if weak -- evidence that the excitation mechanism is a

tensor gravitational wave.

The deduced wave strength. -- If the excitation is caused by gravita-

tional waves, equation (40) must hold in order of magnitude, so

h - 3 X 10 17/Qwave 4s.

As remarked above, the 1971 experimental limit is Qwave , 20. However,

Qwave is probably not even this large -- if it were so large, then one

would conclude that either Weber was fortunate enough to guess the "universal"
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wave band (1580-1661 Hz), or else Weber misses many bursts at other frequen-

cies. It is of crucial importance that good experimental limits be obtained

for Qwave the waves must be examined with wideband antennas, or with narrow-

band antennas at various frequencies.

The luminosity of the source. -- Using equations (45) and (6) we can

calculate the mass M associated with the total energy Mc
2

of each Weber

burst:

M (0.5 O 10 p) (Q r()a 46.

where r is the distance to the source, and L4 rr is the solid-angle beaming

factor, about unity for a typical quadrupole source of waves. If we take

Qwave ~ 10 and suppose the source is at the center of the Galaxy, and that

Weber observes 10 per cent of all events, then the rate of mass loss to

gravitational waves is - 150 M/ yr. (For Qwave - 1, it is - 1500 M./yr; for

contrast, the total luminosity of the Galaxy in E.M. radiation is

- 10
-

2 IMyr.) To reduce this value we can either bring the source much

closer to us, or suppose that aq/4v is small so that the radiation is

"beamed" in our direction or into a narrow range of galactic latitude
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(Misner 1972). Another idea is to look for a "focussing" mechanism which

would decrease the effective distance to the source (Lawrence 1971). No

theoretical model has yet been devised which exploits any of those possibili-

ties in a plausible way.

A different line of reasoning tries to find limits on the mass loss

which are consistent with other observations. The best limit is that of

Field, Rees, and Sciama (1969), Sciama (1969), Sciama et al. (1969) who find

that 70 MC/Jyr is the maximum admissible loss for periods of - 10 yr. A

greater loss would produce runaway stars in our galactic neighborhood, which

are not observed.

The puzzle remains. -- Our assessment, in terms of the original five

probably

possibilities, is that the ultimate answer willjlie in (i) (events not

gravitational waves), (iii) (beaming or focussing of waves), or (iv)

(Galaxy overly active today). Possibility (iii) is attractive, but will

require theoretical models which do not exist today; possibility (iv) will

require this and more -- either we live in an exceptionally active epoch,

or our present cosmological understanding is wildly defective. (Note that

the epoch must be peculiarly active in gravitational waves alone: there is
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no evidence for coincident radio bursts [Partridge (1971), Charman et al.

(1970)] or neutrino bursts [Bahcall and Davis (1971)].

It is characteristic of important scientific puzzles that before the

solution is known all possibilities look equally implausible. Certainly

the puzzle of Weber's observations passes this test.

7. CONCLUSIONS

What progress can one expect in the course of the next ten or fifteen

years? With 1971 technology (strains - 10 measurable on MF resonant

antennas) one could observe gravitational waves from a supernova at a

distance of a few kiloparsecs -- hardly an event that one should count on.

To evaluate the possibilities for other known sources of waves one must

project technological progress: perhaps an improvement of 10 or 100 in the

sensitivity of displacement sensors with the routine use of cryogenic tempera-

tures? Perhaps another factor of 10 or 100 with improved basic technology?

These estimates could expand one's range from kiloparsecs to tens of mega-

parsecs, where one may hope to detect "monthly" events (individual supernovae

or stellar collapses among thousands of galaxies).
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For known monochromatic sources (pulsars, binaries) one must project

the technological prospects for high-Q antennas (cf. eq. 36). Here one

forsees that space experiments may become particularly important: only

rotational resonances are not limited by materials properties (e.g., the

dissipation in a vibrating aluminum cylinder); and a weightless vacuum

environment is the only "perfect" answer to suspension and isolation problems.

Space experiments may also allow the long baselines necessary to detect VLF

or ELF waves with free-mass detectors and laser interferometry. With con-

ceivable improvements in technology, one has hope in the next 10 or 15 years

of detecting waves from short-period binaries as well as from the Crab

pulsar.

If Weber's events are gravitational waves, one projects a more rapid

development of gravitational-wave astronomy: the events can be detected

with current methods; and further technological improvements, particularly

with wide-band devices, will yield immediate returns in greater observational

detail. The impetus of the experimental results on further theoretical

developments will also be considerable.

As a tonic to optimism (or perhaps only as wishful thinking) one recalls
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Jansky's (1933) paper: "Electromagnetic waves of unknown origin were

detected during a series of experiments at high frequencies. Directional

records have been taken of these waves for a period of over a year ....

The time at which these waves are at a maximum .... changes gradually

throughout the year in a manner that is accounted for by the rotation of

the earth around the sun ..... [This fact] leads to the conclusion that

the direction of arrival of the waves is fixed in space, i.e., that the

waves come from some source outside the solar system." Jansky correctly

guessed that the source might be in the direction of the galactic center.

Radio astronomy was the first of the "unconventional" additions to 2 0 th

century observational astronomy, and took more than 15 years to reach

fruition. By now the precedents have been set and the time scale for

advance has been shortened. One hopes -- and expects -- that the

development of gravitational-wave astronomy will be rapid.

For valuable discussions we thank many colleagues -- particularly

V. B. Braginskii and G. J. Dick. For assistance with

the literature search we thank M. Ko and L. Will.
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TABLE II. THE GRAVITATIONAL WAVES WHICH BATHE THE EARTH

(See text for references and discussion)

Region of Source of Characteristics of Waves

Spectrum Waves

Wavelength >

size of galaxies

Primordial Unknown; but must not carry an aver-

age energy density larger than

P ax 10
2 8

g/cm
3

(more would produce

too great a deceleration of the

expansion of the Universe). Thus, 7

< 3 X 103 erg/cm
2

sec, h < 2 X 10-
7
X

(X/106 1. yr.)
2
.

Galaxy

condensation

k ~ 105 Q. yr., 7 < 10
-
2 erg/cm2 sec.

h < 10-7

ELF

P 100 days\

\to - 3 hours/

Explosions in

distant qua-

sars and

galaxy nuclei

Huge explosions (e.g., those which

create strong radio sources) might

produce broad-band bursts with

P - 100 days, * ~ 10
-

1 2 erg/cm
2

sec,

h - 10 . Parameters could be

rather different depending on nature

and nearness of explosions.

The short-term outbursts of quasars (energy

release - 10 ergs in time - one day

may produce waves of -~ 10-
2
1 erg/

2
cm sec - far weaker than flux from

binary stars.

Binary stars

in our galaxy

Too weak to be of interest for P > 10 days.

Each source emits highly monochro-

matic waves at a fundamental

frequency GW = /(orbital period)

and at its harmonics v = (n +1) GWand at its harmonics, vn = ( n + 1) v .
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TABLE II. (cont.)

Brightest known source, i Boo, pro
GW

duces at Earth v 7.5/day,

= 11X 0 1 0 erg/sec, h = 6 X 10
GW

Other source with similar vo but

10
-
12 to o101 1 erg/cm2 sec are

listed by Branginsky (1965 ) and by

Ruffini and Wheeler (1971).

Total Flux at Earth in ELF band,

due to binary stars, is 7 - 1 10-
7

erg/cm
2

sec, with spectrum peaked at

vG 6/day.

VLF

(P 10 sec
/

to 10 sec/

Huge black

holes (M -

105 to 108

Such a black hole might exist in the

nucleus of our Galaxy. If so, each

M ) time it swallows a star of M - Ms,

it emits a broad-band burst of VLF

waves (energy - 1045 ergs, -~ 10-

erg/cm2 sec, h - 10- 1 9 )

LF

(v 0. H \
o 100 H /
\t zl~

Pulsars Crab pulsar (NP0532) emits highly

monochromatic waves at v ; 60 H
7 2 z

and < 3 X 107 erg/cm sec,

h < 0.7 X 102. Our "best guess"

(probable error: - 2 orders of mag-

nitude in g) is -~ 3 X 10- 13 erg/cm2

-27
sec, h - 10

Other known pulsars are weaker by a factor

of 400 or more in S.

MF

to 100 Hz(to 100 kl

Supernovae and

collapse of

stars with

little optical

display

Occur in our Galaxy at least once

every - 100 years; perhaps as often

as once each - 1 year. Should pro-

duce several broad-band bursts with

v ~ 1 to 10 kHz with duration
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TABLE II. (cont.)

10 sec to 1 sec, and with

107 to 10 ergs/cm
2

sec,

h -2 X 10-19 to 10
-

17

In galaxies out to distance of Virgo

cluster such events should occur at least

once each month, with g ~ 10 to 104

ergs/cm sec, h 2 X 10- to 10- 2 0.

After collapse, if a neutron star is

formed, its rotation should produce

monochromatic waves (during the first

few days of its life) with v - 1 kHz;

- 1 erg/cm2 sec, h - 10- 2 2 in

our galaxy; -~ 10- 6 erg/cm
2

sec,

h - 10 in Virgo.

Superdense

clusters

Huge black

hole in

center of

Galaxy

See text for discussion. Such sources

seem unlikely from conventional 1971

viewpoints.

Gravitational synchrotron radiation,

from objects injected into hole with

high energy, can come off in the MF

region of spectrum; see text. Such

a source seems unlikely from con-

ventional 1971 viewpoints.
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FIGURE CAPTIONS

Fig. 1. Lines-of-Force diagram for the relative forces produced by a

gravitational wave (Press 1970 ). The fiducial point, relative to which

one measured the forces, is at the origin of coordinates. The direction

of the relative force at any point is the direction of the arrow there;

the magnitude of the force is proportional to the density of force lines.

The force lines are hyperbolae, and their density is proportional to dis-

tance from the fiducial point [cf. eq. (3) and (15)]. The diagram for

polarization "+" corresponds to equation (5) with h
X
= 0, h+ > O; that for

polarization "X" corresponds to h+ = 0, hX > 0. When the wave changes phase

by 180 , the directions of all arrows reverse.

Fig. 2. Three types of gravitational-wave detectors illustrated by

idealized examples: (a) Free-mass detector (e.g. two masses in "free-fall"

orbit above the Earth). The displacement sensor (e.g. laser interferometer)

must leave the masses free. (b) Almost-free detector. The masses are coupled

to their surroundings, and perhaps also to each other, by (i) a suspension

system and/or (ii) the displacement sensor. However, the motions excited

by the gravitational waves (here displacements of suspended masses in y
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direction) are essentially free. (Free motion here requires that the wave

frequency vGW be far larger than the "pendulum" frequency v
0

in the y-

direction, vGW >> vO; and also large compared to characteristic frequencies

vMDS of the coupled mass-displacement-sensor system, vGW >> vMDS.) (c)

Resonant detector. The masses are strongly coupled, and vibrate in a reso-

nant mode at the frequency vGW of the gravitational wave.

Fig. 3. Graphical evaluation of the effect of a burst-type wave on a

resonant antenna (see text for details). Rn is the wave's driving force,

G is the antenna's Green's function

G(%) I(l/wn) sin(wn) exp(- %/Tn), > 0

O , <0

+00
and the response of the antenna to the wave is B (t) = X Rn(s) G(%) d5.

The three plots correspond to times t that are (a) before the burst reaches

the antenna, (b) while the burst is exciting the antenna, and (c) after the

burst has passed.
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